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SOMMARIO 
 

Durante l’anno 2006 la Tecnam ha portato avanti la progettazione di un velivolo bimotore leggero denominato 
P2006. Il progetto del Prof. L. Pascale è basato sullo sviluppo di un velivolo quadriposto motorizzato con due 
motori Rotax leggeri da 100 hp. Il nuovo velivolo è caratterizzato da un peso massimo al decollo paragonabile 
con quello di velivoli monomotori e per questo denominato VELT (Very Light Twin). Nel presente lavoro 
vengono delineati gli elementi principali  del progetto alla base della scelta della configurazione. Nel lavoro 
vengono poi mostrati i risultati di indagini numeriche e sperimentali svolte presso il Dipartimento di Ingegneria 
Aerospaziale dell’Università “Federico II”. Le prove e le ricerche, oltre che alla determinazione delle 
caratteristiche aerodinamiche del velivolo, sono state incentrate sulla valutazione degli effetti aerodinamici 
della fusoliera e delle gondole sull’aerodinamica ed in particolare sulla distribuzione di carico aerodinamico 
lungo l’apertura, fondamentale ai fini della valutazione dei carichi certificativi. 
 
ABSTRACT 
 
Design of a new twin propeller aircraft named P2006 VELT (Very Light Twin) has been carried out at Tecnam 
aircraft industries during 2006. The new aircraft design, performed by Prof. L. Pascale, is based on the idea to 
built a 4-seat aircraft with two light engines (Rotax 912, usually used for ultralight aircraft) and to enter the 
market with a twin-engine aircraft with the same weight of a single engine aircraft (VEry Light Twin). The 
present paper shows all main criteria on which the design of the aircraft and the choice of the configuration 
have been based. At Dipartimento di Ingegneria Aerospaziale (DIAS) of University of Napoli “Federico II” a 
deep aircraft aerodynamic investigation has been performed both numerically and experimentally (through 
wind-tunnel tests). All tests and research activities have been focused on the evaluation of aircraft aerodynamics 
and in particular on the measurement of fuselage and nacelle aerodynamic effects. Deep investigations have 
concerned the evaluation of fuselage and nacelle effect on lift distribution along wing span, fundamental for the 
evaluation of certification loads.  
 

 
1. INTRODUCTION 

 
During the last 15 years Tecnam Aircraft Industries has been designing and developing more than 10 light and 
Ultralight(ULM) 2-seat aircraft characterized by high-wing or low-wing configurations and introducing 
interesting technological innovation (for light aircraft with the weight of 500-600 Kg)  like the retractable gear. 
The market of light aircraft has been growing in the last decade all over the world and Tecnam has reached a 
leadership with more than 2000 aircraft sold in 15 years. The Department of Aerospace Engineering (DIAS) of 
University of Naples have been deeply involved in research activities concerning almost all of these aircraft[1,2]. 
Extensive activities have been carried out in collaboration with Tecnam on structural analysis, structural tests, 
aerodynamic analysis and optimisation, noise and vibration tests, wind-tunnel tests and flight tests. Almost all 
light aircraft produced by Tecnam have been tested in the main wind-tunnel belonging to DIAS. An example of 
some light aircraft that have been an important commercial success are shown in fig. 1. 
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Since 2006 Tecnam has started his intention to enter the market with a new CS 23 certified 4 seat aircraft.  
In the last years, starting from the United States, the General Aviation has been revitalized, due to the necessity 
to decongest the classical skyway system and to use thousands of small airport in the country. With this aim the 
AGATE consortium was founded in 1994 to develop affordable new technologies to be applied on next 
generation light airplanes. In addition the fast economical growth of developing countries (like in Africa, south-
America and in south-east of Asia) that do not have developed transportation systems has pushed the use and the 
diffusion of light aircraft in those areas. In example in some remote area of south Africa the transport through 
light aircraft can be the only solution, taking into account the absence of asphalt roads and the low acquisition 
and maintenance costs of these kind of machines.  
 

    
 

Fig. 1: P92 Echo and P2002 JR aircraft 
 
General aviation and light aircraft can be also extensively used for touristic transport and to perform services like 
aerial monitoring (police patrol or fire monitoring) with a reasonable cost respect to the classical use of 
helicopter. The other aspect (in particular looking at the not-developed countries market) that has been carefully 
considered by Tecnam has been the installation of engines using standard automotive fuel instead of aviation 
fuel. The reason is based on the lower cost and especially on the easy possibility of finding this fuel everywhere. 
The above remarks put clearly in evidence the growing market for light aircraft with 4 seats, with a flight speed 
around 250-300 Km/h, with capability of flight altitude up to 12000 ft, with relatively simple , light and not-
expensive construction (typical of ultralight and VLA certified aircraft) and so with a reasonable cost and with 
low maintenance costs. It is very important (considering the possibility of use in not developed areas and the 
take-off and landing capabilities from not-prepared airfields) the characteristic of relatively short take-off and 
landing run.  
 
2. MARKET ANALYSIS AND P2006 AIRCRAFT DESIGN ASPECTS 
 
Design of a new twin propeller aircraft named P2006 VELT (Very Light Twin) has been carried out at Tecnam 
aircraft industries during 2006. The design of the new aircraft, performed by Prof. L. Pascale, is based on the 
idea to built a 4-seat aircraft with two light engines (Rotax 912, usually used for ultralight aircraft) and to enter 
the market with a twin-engine aircraft with the weight of a single engine one. This project starts with the 
consideration that Rotax 912 S is the only engine available for the aviation market that uses automotive fuel and 
is FAR 33 certificated. This engine has been recently designed taking all the advantages of the latest 
technologies developed in the automotive market over the standard G.A. engines. Those mainly are: 

• Reduced frontal area and better weight to power ratio 
• Lower specific fuel consumption 
• Lower propeller rpm i.e. higher efficiency and lower acoustic emissions 
• Stable engine head temperatures due to liquid cooling 

So far this modern powerplant, given its moderately low power (73 KW or 100 hp), has been used essentially on 
two seats single-engine light airplanes. It now becomes evident the opportunity to design a four-seats airplane 
powered by two of these Rotax engines with a neglecting weight difference, higher safety due to the twin engine 
arrangement and quite lower costs respect the single engine competitors. 
In the following table(table 1) we compare the performance of some four seat, 200 hp aircraft available on the 
market today.  It is evident that: 

- For the first time ever it is possible to compare a twin-engine four seat aircraft with single-engine four-
seat aircraft, due to their similar weight and power specifications; 
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- The P2006 empty weight is the lowest among twin engine aircrafts while the payload is higher. This 
can be attributed to the high structural and system efficiency and because of the excellent weight-to-
power ratio of the Rotax engine. The wing-mounted engines relieve the aerodynamic load on the wing 
with a consequently lighter structure; 

- The remarkable expected propulsive efficiency of P2006 can be ascribed to the low propeller rpm and 
low engine nacelle drag. These aspects, together with a streamlined fuselage, result in a good 
aerodynamic efficiency, as also confirmed through wind-tunnel tests (see after); 

- From an operating point of view, is worth to consider that the option to use automotive fuel instead of 
AVGAS allows P2006 operators to dramatically reduce direct costs, making also possible to fly in 
regional or remote areas where AVGAS is difficult to find or prohibitively expensive; 

- Low fuel consumption of Rotax engines and a high aerodynamic efficiency allows P2006 to be flown 
over long distances and in areas where ground facilities are poor. 

-  
 

 
 

Table 1: 4-seat light aircraft comparison 
 
Fig.2 shows the comparison of frontal area and general characteristics of Rotax 912S engine and Lycoming IO-
360 used in Cessna 172 and Piper PA-28 aircrafts. The figure shows that the weight-to-power ratio of Rotax is 
favourable and so the weight of 2 Rotax 912S is lower than the weight of one Lycoming. It si also possible to see 
that Rotax 912S engine frontal area is lower and in general allows a wing-mounted streamlined nacelle, reducing 
drag penalty arising from the twin-engine wing-mounted configuration. Other important consideration is that 
Rotax 912 max power is obtained at 2390 rpm instead of 2700 rpm relative to Lycoming.  
Lower rpm allows higher propeller thrust at low flight speed improving aircraft take-off and climb performances. 
Fuel consumption is another big advantage of Rotax versus Lycoming.  
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 Rotax 

912S 
Lycoming 

IO-360 
Weight- dry 59 Kg 149 Kg 
Max Power 100 hp 

@2390 rpm 
200 hp 

@2700 rpm 
Frontal 
Area 

0.322 m2 0.428 m2 

Max width 575 mm 867 mm 
Fuel cons. 19 l/h 46 l/h 

 
 
 

 
Fig. 2 : Comparison of Rotax 912S engine and Lycoming IO-360 

  
The Rotax 912S will drive on P2006 aircraft a 2-blade Hoffmann constant speed propeller with pitch feathering 
device and with Diameter of 1.78 m. The reduced frontal area of Rotax 912S engine, allows to have a good ratio 
between the area of propeller disk and the engine-nacelle frontal area behind the disk. As we know the engine 
frontal area behind the propeller can reduce propeller efficiency and this reduction is associated with the above 
mentioned ratio. The propulsive maximum thrust available by two Rotax 912S has been evaluated through 
Hoffmann propeller charts. Correction to take into account engine frontal area behind the propeller have been 
applied. Similar calculation have been performed for one 200 hp Lycoming engine.  
Fig. 3 shows that at low flight speed 20% higher thrust can be obtained by Rotax912S engine. At cruise and 
high-speed condition not remarkable difference can be observed. The higher thrust of Rotax912S is mainly due 
to the fact that the same engine power is distributed on much larger propeller disk area(area of two disks of 1.78 
m diameter). Other small effect arises from lower rpm of Rotax 912S (2390 instead of 2700) at maximum power 
conditions.  
Fig. 4 shows weight and certification characteristics of several light single and twin-engine aircraft. Through an 
accurate analysis of this figure the following considerations can be outlined: 

- The Maximum take-off weight (MTOW) of P2006 is comparable to single-engine aircraft; 
- Looking at flight performances P2006 can not compete with classical twin-engine aircraft, usually 

powered by much powerful engine. 
Conclusion is that P2006 is a twin-engine aircraft that can compete in a favourable way (similar performances 
but lower direct and operative costs) to single-engine aircraft. 
It can also be observed that P2006 aircraft fills a market area in which are not present other aircrafts.  
The weight difference with other twin-engine aircraft is evident. The light twin engine will be favourable  
compared with a single engine four seat aircraft powered by a 180 or 200 hp engine.  
 
The introduction of a light twin-engine is actual not a novelty. In fact, after the war in Czech Republic was 
designed and built a light twin-engine aircraft named AERO 45. The 4-seat aircraft was powered by two Walter 
105 hp engine each  and was characterized by a MTOW of 1600 Kg. The wing loading was 88 Kg/m2 and 
maximum flight speed was 270 Km/h. The aircraft had a fairly good success and more than 800 aircrafts were 
built.  
 
All design aspects previously outlined and others specified in the next paragraph, has leaded to the P2006 
configuration, shown in the aircraft 3-view of fig. 5, together with its main geometrical and mass data. 
 

0.428 m^2 

19 l/hr 

    Rotax 912S      Lycoming IO-360 
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Fig.3 : Calculated propeller thrust for Rotax912S and Lycoming engine 
 

 
 

Fig.4 : Table of Max Take-off Weight (MTOW) and certification base of several light aircraft 
 
 

2 Rotax 912S 100hp + propeller Ø1.78m  
 

1 Lycoming 200hp + propeller Ø1.88m 

Propeller 
Thrust 
[Kg] 

V [Km/h] 
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P2006 CHARACTERISTICS 
 

Wing span   11.2 m  Cabin width   1.20 m 
Mean geometric chord 1.32 m  Maximum Take-off weight 1160 Kg 
Wing Area  S 14.76 m2 Power installed   2 x 100 hp Rotax 912S 
Aspect ratio   8.47 
Length   8.30 m 

 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 : P2006  aircraft 
 
3. STUDY AND DEVELOPMENT OF THE CONFIGURATION 
 
3.1 P2006 configuration 
In the present paragraph all results about the performed study and development of the configuration will be 
presented. The design of the aircraft has been accomplished starting from the following design specification (see 
also par. 2): 

 Easy cabin access and cabin comfort for passengers 
 Spacious luggage compartment of more than 300 litres, which is easily accessible from external door 
 Reduced take-off run (<1500 ft) and possibility to take-off from not prepared runways 
 Cruise flight speed of about 140 Kt at flight altitude of 7000-8000 ft. 
 Range higher than 500 nm (see also the evaluated PayLoad-Range Diagram in the next pages) 
 Installation of an AFCS (Automatic Flight Control System) 

The study and the development of the configuration are well described by the pictures of fig. 6. 
The easy cabin access has leaded to the necessity of high-wing configuration. Other considerations that has to be 
taken carefully into account are aircraft CG position and certification problem arising from propeller longitudinal 
position. In fact both FAR 23 and CS23 state that two lines at ± 5° from propeller disk do not have to intersect 
pilot position or pilot flight command. This leads to the fact that the two propellers have to be located well 
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behind or well in front of pilot position. The low-wing configuration (A in fig. 6) and the high-wing (B in fig. 6) 
with the wing located to optimise aircraft CG travel show a very long nacelle due to the above mentioned 
certification problem. In addition the low-wing configuration show a not streamlined nacelle due to the necessity 
to ensure a good propeller clearance from the ground.  
 

 
 

Fig. 6 : P2006  aircraft possible configurations 
 
Both configuration A and B, with absence of CG travel problems, are therefore characterized by a big nacelle 
with poor aerodynamic and negative effect on aircraft parasite area. In addition that solution leads to high 
torsional loads on the wing due to engine inertia forces. 
It is worth to notice that the low-wing configuration (that does not guarantee the easy cabin access) is also 
penalized by a higher landing gear (tip propeller ground clearance) with a consequent increase of aircraft empty 
weight. From the consideration (see design specification) to guarantee possible take-off from not prepared and 
grass runways the low-wing configuration is penalized due to possible ingestion for the engine and high 
possibility for the propeller to not work in optimal conditions. 
The configuration C(see fig. 6) with high-wing, but with a cabin placed forward the wing+engine group is not 
optimal from CG considerations, showing a forward CG travel in full load (MTOW) conditions respect to light 
weight conditions (only 1 light pilot). That configuration is the best for the aircraft specifications considering 
that main design goal are to reduce parasite area (not possible with very big nacelles) and to have a very light 
empty weight (engine and nacelle mounted close to the wing). Another important consideration in favour of this 
choice is that the forward CG travel is not so critical like backward CG travel(that cause a dangerous decrease of 
aircraft stability), causing an increase of flight longitudinal stability and only a slight increase of stick forces. 
The configuration C has therefore been chosen for P2006 aircraft.             
In the left part of the same figure the push-pull (D) and the 2-pusher propeller configurations (E) are sketched. 
The two configuration have interesting good features but are not optimal for the considered aircraft specification.   
The push-pull has the good characteristic of absence of yawing moment in case of one engine inoperative and 
this leads to low vertical tail area. Some serious problems are associated with this configuration, like the 
structural difficulties and high costs of the twin-boom tail with double vertical tail, difficulties for the rear engine 
cooling, very high parasite area due to the not streamlined fuselage. 
The twin-pusher propeller (configuration E) has also some problems due to engine cooling, necessity to interrupt 
the flap on the wing (loosing also some area available for the flap), acoustical problems due to the propeller 
working behind the wing wake. The above considerations make the two (D, E) configurations not convenient. 
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The main advantages and disadvantages of the chosen configuration (C) (see also fig. 7 with the side-view of 
P2006 and occupants accommodation) are: 
 
 Advantages 

- easy cabin access  
- nacelle with low aerodynamic drag, structural simplicity and low weight 
- high span efficiency factor (Oswald factor “e”) avoiding complex fairing at wing-fuselage junction 

typical of low-wing configurations [3] 
- good flight visibility  
- low effect of engines on lateral and longitudinal stability (propeller disk located close to CG position) 
- propeller not exposed to dirtiness during take-off from grass runways 

Disadvantages 
- high CG travel in forward direction 
- fuel and engine service less easy 
- necessity to have fuselage pods (sponson)  
- higher weight of main landing gear support structure 

 

 
 

Fig. 7 : Side-view of P2006 chosen  configuration 
 

3.2 Wing Planform Design 
The wing has been designed taking into account the necessity to have good flight performances and low wing  
structural weight. The aircraft overall performances can be well represented by a general performance parameter 
introduced by Oswald in NACA TR 408 [3] of 1932 : 

3/1
P

3/4
TS

λ
λλ ⋅

=Λ                       (1) 

The general parameter is composed by three parameters: 

( )2S be
W
⋅

=λ   effective span loading   (2) 

( )P
W

T ⋅
=
η

λ   thrust-power load ing  (3) 

f
W

P =λ   parasite area load ing  (4) 

 where W is the aircraft weight, b is the wingspan, e is the Oswald factor, η is the propeller efficiency and P is 
the max installed shaft horsepower, f is the equivalent parasite area( SCDf o ⋅= ). 
These ratios are linked respectively to: 

 the energy necessary to develop wing lift (necessary to win the induced drag and associated effects) 
 the energy available to develop aircraft engine thrust 
 the energy necessary to win parasite drag. 

The general parameter Λ combines all main aircraft characteristics and is a good indication of aircraft 
performances and quality. It is easy to see that the way to increase general aircraft performances is to lower Λ 
(and so to lower the first two parameters and to increase the third one). 
To this aim the wing span has been chosen in order to contain induced drag and to have small value for Sλ .  
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The wing span has been set to a value of 11.2 m. The wing planform (see fig. 8) has been chosen with the 
following considerations: 

 the mean aerodynamic chord is shifted toward aircraft nose (good for the chosen configuration due to 
unfavourable CG forward travel mentioned above) 

 the internal part of the wing (the flapped part) is rectangular in order to simplify flap construction (flap 
will be lighter and with lower cost) 

 the wing planform (with the external tapered part) leads to a fairly good value of the Oswald span 
efficiency factor “e”  and leads to a safe stall path (as confirmed by wind-tunnel tests). 

Concerning induced drag the critical condition will be climb with one engine inoperative (OEI climb). If flight 
tests will indicate unsatisfactory performances, the aircraft will be modified using improved tip shapes like 
winglet without making big changes in the wing main structure. The wing airfoils have been chosen in order to 
reduce parasite drag. A NACA 63A415 (15% thick) modified airfoil has been used in the wing rectangular part 
together with a slotted flap with low hinge position (see fig. 8). The tip airfoil is a similar airfoil but with 12% 
thickness. 
 

 
 

Fig. 8 : wing design 
 
3.3 Fuselage, nacelle and tail group design 
The fuselage (see 3D CAD images in fig. 9) has been designed in order to have low parasite drag. The fuselage 
shape is characterized by a favourable low value of fuselage wetted area over fuselage volume. Nacelle are very 
small and well streamlined (see fig. 9), due to contained dimensions of Rotax engine. 
 

   
Fig. 9 : fuselage and nacelle 3D-CAD drawings 

 
As for other Tecnam aircraft a all-mouvable stabilator has been chosen. This choice leads to advantages for 
aircraft longitudinal control(higher tail efficiency) and for stick-free stability (absence of stability reduction 
compared to the stick fixed case). In addition the stabilator is a simple structural solution and characterized by a 
lower cost. The vertical tail has been designed for minimum control speed (VMC) in OEI conditions. A value 
slightly higher of minimum control speed respect to stall speed (VMC not higher than VS or 1.1 VS) has been 

Slotted flap 
NACA 63A415 mod 

Frise Aileron 
NACA 63A412 mod 

Wing span b=11.20 m 
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chosen to guarantee good and safe take-off characteristics. The VMC chosen value is considerably lower than the 
certification limit (VMC not higher than 1.2 VS). 
 
3.4 Aircraft weight characteristics 
The general performance parameter does not include any information on aircraft empty weight. Although, as 
known, the empty weight is one of the most important characteristics to ensure aircraft commercial success. 
Using standard alluminum alloy construction technique (typical of all light and ultralight Tecnam aircraft) P2006 
structural weight is close to the ones of other 4-seat aircraft. As can be seen from fig. 10 P2006 lays very close to 
the characteristic line (representing We/Wto ratio) of single-engine aircrafts. All other twin-engine models have 
values of this ratio close to 0.68.  

 

 
 

Fig. 10: Empty weight (We) and Maximum Take-off weight (Wto) of several light aircraft   
 
4. AIRCRAFT AERODYNAMICS AND PERFORMANCES 
 
Deep numerical and experimental investigation has been performed on P2006 aircraft at Department of 
Aerospace Engineering of University of Naples “Federico II”. An intensive wind-tunnel test campaign has been 
carried out during the summer of year 2006 [4]. Department of Aerospace Engineering has been deeply involved 
in design and testing of Tecnam ultralight aircraft [5]. Expertise on careful analysis and testing techniques has 
been matured by researchers at Department of Aerospace Engineering[6]. The wind-tunnel belonging to the 
Department has been used  intensively during the last years for the testing and design of light aircraft [7, 8, 9].  
Wind-tunnel tests of a 1:6.5 scaled model have been performed on wing-body and complete configuration 
through 3-component longitudinal balance measurement. Reynolds number during tests was 0.6 million.  
Many tests have been performed with and without the two nacelles in order to evaluate their effect on aircraft 
aerodynamics. Fig. 11 shows some picture with some particular of the aircraft wind-tunnel model. In the figure 
flow visualization through tufts showing flow separation on nacelle lower surface(that reproduces the original 
nacelle with engine cooling exhaust) is presented. But as it will be shown in the next figures, the loss of lift is not 
only in the nacelle area. 
In fig. 12 the effect of nacelle on wing-body lift curve is shown. The lift slope is slightly modified by the two 
nacelle. Lift slope of about 0.080 [1/°] has been measured. The effect of nacelle is a lift coefficient reduction 
around 0.05 in all the angle of attack range. The same figure shows a tufts visualization of wing stall path. As 
can be clearly seen from the picture the flow separation is higher at the two sides of the nacelle. The wing 
external part (aileron) is charaterized by attached flow condition. As already said, the wing planform leads to 
good stall path with full aileron control at stall conditions.  
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The effect of nacelle on wing-body moment coefficient is shown in fig. 13. Moment coefficient has been 
measured respect to cruise aircraft CG position (about 25% of m.a.c. and 20% of m.a.c. below the wing chord as 
vertical position). The wing-body aerodynamic centre position shows that the fuselage (with large part in front of 
wing) cause an aerodynamic centre (a.c.) forward shift of about 9-10% of mean aerodynamic chord respect to the 
wing, supposed to be around 24-25%. This is a measure of fuselage instability and is in good accord with 
numerical preliminary evaluations. The effect of nacelle on aircraft stability is also measured. In the same figure 
the moment curve relative to the wing-body+nacelle configuration shows an a.c. further shift of about 3% 
(compared to the wing-body a.c. position). The loss of stability associated to nacelle is therefore reduced to a 
reasonable value due to the streamlined and small nacelle shape.  In fig. 13 the effect of nacelle on wing-body 
drag is shown in fig. 13. Relevant parasite drag arises from nacelle shape and from nacelle lower surface 
separation. Effect on Oswald span efficiency factor (measured to be around 0.74 for wing-body and 0.66 for 
wing-body+nacelle) has been also measured. 
Fig. 14 shows aerodynamic measurement on complete aircraft. From fig. 14a the neutral point position in cruise 
conditions is around 38% of the m.a.c. A classical behavior due to pendular stability (CG is placed below the 
chord) leads to a non-linear curve and to an increased static margin at higher angles of attack. 
The drag polar at several stabilator deflection (see fig. 14b) leads to the measurement of trimmed drag polar. The 
measured trimmed drag polar of the complete aircraft+nacelle is characterized by a CDo =0.035 and an Oswald 
efficiency factor of about 0.70. In order to have an estimation of aircraft drag polar to use for performance 
calculation, the CDo value has to be  corrected for Reynolds number effects (the cruise Re number is about 7 
million respect to 0.6 million in wind-tunnel tests). The assumed trimmed flight polar is:  CDo=0.0254     e=0.70 
The equivalent parasite area is f=0.361 m2. This measured parasite drag characteristics lead to promising flight 
performances. In fact this value of parasite area is very far to preliminary assumption made during the design 
phase. The aircraft performances estimation is resumed in table 2. The aircraft should be characterized by good 
cruise, climb and ground performances. 
 

   
 

Fig. 11: P2006 wind-tunnel model 
 

  
Fig. 12: Wind-tunnel tests: effect of nacelle on aircraft lift(left),  wing stall path (right) 

 

048.0CLNAC −=Δ

aileron 
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Fig. 13: Effect of nacelle on aircraft longitudinal moment and on wing-body drag polar (wind-tunnel tests) 
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Fig. 13: Complete aircraft at several stabilator deflections. Stability and drag polar (wind-tunnel tests) 

 
 

 
Cruise speed  
@ 75% and 7000 ft 

140 Kts 
(260 Km/h) 

Take-Off ground Run 235 m 

Max level speed  
7000 ft 

150 Kts 
(278 Km/h) 

Take-off distance 
(FAR obstacle) 

450 m 

Max Rate of Climb @ S/L 1300 ft/min Range (65% cruise MAP) 1500 Km 
Fastest climb speed Vy 83 Kts   

 
Table 2: P2006 estimated performances 

 
P2006 is characterized by a value of general performance parameter Λ of 0.035. The value shows good 
performances, considering that other twin-engine aircraft are characterized by higher value of this parameter. In 
example Diamond DA42 has a value of Λ=0.041 (18% higher) and Piper Seminole has Λ=0.037. 
 
 

MAC %14    X WB_AC =

MAC %11X NACWB_AC =+

WBODY                 CDo=0.025   e=0.71 
WBODY + NAC     CDo=0.032  e=0.62 

Trimmed conditions 

Trimmed polar 

CDo =0.035    e=0.70 
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4.1 Measurement of fuselage and nacelle effect on wing-span load 
In addition the wood model has been equipped with several pressure holes on 4 sections in order to measure 
fuselage and nacelle effect on wing span loading. As already shown the balance measurement showed a lift 
coefficient global reduction of 0.05 caused by the two nacelles. Goal of the investigation was to understand the 
localization of lift loss and to measure effects along wing span. These measurements are useful for wing span 
loading estimation to be used for certification flight load assessment.  
In fig. 14 the localization of the four measurement station is shown. At each station 20 pressure point (obtained 
through 20 tubes placed in the wood model) were measured along wing chord. The measurements were made 
closing 3 stations and measuring pressures in the open one.  
In fig. 15 the measured span load (c*Cl) lift distribution of wing-body and wing-body+nacelle configurations are 
shown. In fig 16 and 17 pressure measurement at an angle of attack of 4° are shown for the wing-body and wing-
body+nacelle configurations. From fig. 15 and fig. 16 it can be seen that the fuselage leads to a lower lift 
coefficient on the wing close to wing-fuselage junction. Figure 16 clearly show that the reason of this loss of lift 
is a lower pressure coefficient (more suction) on wing lower surface close to the fuselage. Pressure on wing 
upper surface does not seem to be modified in a relevant way. Figure 15 shows that the nacelle leads to a 
reduced lift not only in the nacelle area, but also at both left and right sides of nacelle on the wing. From fig. 17 
it can be seen that the nacelle leads to higher suction on upper wing surface at both sides of nacelle (station 2 and 
3). 
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Some aerodynamic calculations have been performed on wing-body and wing-body+nacelle configurations 
using a 3D standard panel method to confirm wind-tunnel test results and to extend span load estimation up to 
wing tip. In fig. 18 an example of calculated pressure distribution on wing-body + nacelle is shown. Fig. 19 
show pressure distribution on wing-body configuration at alpha=4°. The picture clearly show that a negative 
pressure area is present at wing-fuselage junction. This confirm the suction which is responsible of wing lift loss 
at junction (see also figg. 15-16). 
 

       
 
Fig. 18: 3D panel method calc. on wing-body+nacelle Fig. 19: Calculation on wing-body at alpha=4°  
 
The lift span load (c*Cl) can be calculated at several angles of attack for both wing-body and wing-body+nacelle 
configuration and is represented in fig.20. The lift in the nacelle area does not take into account the flow 
separation (the nacelle is modelled as “filled” and so the code “sees” attached flow conditions) and higher values 
of wing chord (nacelle chord) are considered. Fig. 21 shows a comparison of numerical calculations and wind-
tunnel measurements at alpha=4°. A good agreement can be observed.  
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Fig. 20: 3D panel method calc. on wing-body+nacelle Fig. 21: Calculation on wing-body+nac, alpha=4°  
 
The numerical/experimental span load curve can be used to evaluate (for difference between wing lift measured 
from the integration of wing span load and wing-body+nac lift measured from strain gauge balance) fuselage lift 
contribution. The fuselage lift is also increased by the presence of landing gear pods that acts like two small 
wings. In fig. 22 the wing and fuselage span load estimation (through a careful analysis of wind-tunnel 
measurements and numerical calculations) is presented. The figure shows some possible wing span load curves. 

+    experiment  
(wind-tunnel tests) 

____ numerical 

Wing-body + nacelle 
alpha=4° 

L. Pascale, F. Nicolosi

112 Aerotecnica Missili e Spazio Vol. 87 3/2008



In fig. 22 is possible to see 4 different span load curves that can be assumed for flight load evaluation. All curves 
are relative to a lift coefficient of CL=0.55, that is the lift coefficient in the D point of the manoeuvre diagram for 
P2006 aircraft. The yellow curve is relative to the isolated wing and can be evaluated through panel method 
calculations performed on the wing or through lifting line theory (multhopp or schrenk). The black curve is 
relative to wing-body and sees the fuselage influence. The lift due to the fuselage (from (y/b/2)=0 to about 0.10) 
as already said has been estimated for difference between experimental/numerical curve (like that one of fig. 21)  
and wind-tunnel balance measurement on the configuration which includes the fuselage. 
Other two curves can be drawn for the wing-body+nacelle configuration. The first curve (blue one) is obtained 
from the wing-body one (black) subtracting the area proportional to the nacelle negative lift contribution ( fig. 
12) estimated through wind-tunnel tests. The fuselage shows higher lift due to the necessity to change angle of 
attack in order to have always a global lift coefficient of 0.55. The last curve (red one) is the more realistic and is 
obtained considering the effective pressure distribution on the wing-body+nacelle configuration (see fig. 21) and 
assuming the same level for the fuselage lift. 
The four span load distributions (all with the same global lift load) are used to evaluate structural bending 
moment at wing connection. Structural moment is evaluated through aerodynamic loads and also taking into 
account wing structure, systems and engine mass inertia forces (at manoeuvre point D the load factor n is 3.8). 
The resulting bending moment diagram is shown in fig.  23. It can be seen that, taking the realistic span load 
curve a lower (up to 10% reduction for the wing-body+nacelle case) bending moment (around 26000 Nm) is 
obtained at wing root respect to the simplified approach of considering standard schrenk distribution for the wing 
and so neglecting fuselage and nacelle influence. 
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Fig. 22: Possible span load distributions at point D  Fig. 23: Bending moment curves at point D  
 
5. CONCLUSIONS 
 
Design activities concerning P2006 aircraft have been presented. The paper highlights all main aspects that have 
leaded to the chosen configuration. Comparison with other 4-seats aircraft has been illustrated. Results of a deep 
wind-tunnel test campaign performed at Department of Aerospace Engineering have been shown. All evaluated 
performances based on wind-tunnel tests show good potentiality for the aircraft that  Particular importance has 
been devoted to the evaluation (also performed through numerical methodologies) of fuselage and nacelle 
aerodynamic influence. A deep analysis of wing span load has been performed and presented.   
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